00001 // Copyright (C) 2001--2002 Petter Urkedal
00002 //
00003 // This file is free software; you can redistribute it and/or modify
00004 // it under the terms of the GNU General Public License as published by
00005 // the Free Software Foundation; either version 2 of the License, or
00006 // (at your option) any later version.
00007 //
00008 // This file is distributed in the hope that it will be useful,
00009 // but WITHOUT ANY WARRANTY; without even the implied warranty of
00010 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00011 // GNU General Public License for more details.
00012 //
00013 // You should have received a copy of the GNU General Public License
00014 // along with this program; if not, write to the Free Software
00015 // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
00016 //
00017 // As a special exception, you may use this file as part of a free
00018 // software library without restriction. Specifically, if other files
00019 // instantiate templates or use macros or inline functions from this
00020 // file, or you compile this file and link it with other files to
00021 // produce an executable, this file does not by itself cause the
00022 // resulting executable to be covered by the GNU General Public
00023 // License. This exception does not however invalidate any other
00024 // reasons why the executable file might be covered by the GNU General
00025 // Public License.
00026 //
00027 // $Id: equi_set.h,v 1.3 2002/09/01 12:01:45 petter_urkedal Exp $
00028
00029 #ifndef MORE_GEN_EQUI_SET_H
00030 #define MORE_GEN_EQUI_SET_H
00031
00032 ///\if experimental
00033
00034 namespace more {
00035 namespace gen {
00036
00037 /** \class equi_set equi_set.h more/math/equi_set.h
00038 A set of equidistant numbers. */
00039 template<typename Number>
00040 struct equi_set
00041 {
00042 equi_set(Number begin, Number end, Number step)
00043 : m_beg(begin), m_end(end), m_step(step) {}
00044
00045 bool contains(Number i)
00046 {
00047 return !(i < m_beg) && i < m_end;
00048 }
00049
00050 equi_set& operator|=(equi_set const& rhs) const;
00051
00052 friend Number below(equi_set const& x) const {return x.m_beg-m_step;}
00053 friend Number min(equi_set const& x) const { return x.m_beg; }
00054 friend Number max(equi_set const& x) const { return x.m_end-m_step; }
00055 friend Number above(equi_set const& x) const { return x.m_end; }
00056
00057 private:
00058 Number m_beg;
00059 Number m_end;
00060 Number m_step;
00061 };
00062
00063 template<typename Number>
00064 equi_set<Number>&
00065 equi_set<Number>::operator|=(equi_set const& rhs)
00066 {
00067 if (m_step == rhs.m_step) {
00068 if ((m_beg - rhs.m_beg) % m_step == 0) {
00069 if (rhs.m_beg < m_beg) {
00070 if (rhs.m_end < m_beg)
00071 goto fail;
00072 m_beg = rhs.m_beg;
00073 }
00074 if (m_end < rhs.m_end) {
00075 if (m_end < rhs.m_beg)
00076 goto fail;
00077 m_end = rhs.m_end;
00078 }
00079 return *this;
00080 }
00081 throw std::logic_error("more::math::equi_set::operator|=: "
00082 "Case is not implemented.");
00083 }
00084 fail:
00085 throw std::logic_error("more::math::equi_set::operator|=: "
00086 "Result set can not be represented.");
00087 }
00088
00089 }}
00090
00091 ///\endif
00092
00093 #endif